Металлургия

Пневматический генератор звуковых пульсаций

Полезная модель относится к метрологии, в частности к акустическим установкам для тарировки датчиков. Пневматический генератор звуковых пульсаций содержит источник давления, резонансную трубу, состоящую из основной камеры нагнетания диаметром d и рабочей камеры диаметром d, с установленными в стенке рабочей камеры напротив друг друга контрольным и тарируемым датчиками. Основная камера выполнена с отверстием-соплом диаметром da, направленным в сторону рабочей камеры, в стенке которой установлен дифференциальный малогабаритный индуктивный датчик давления ДМИ 0,1 для регистрации пульсации давления в полости рабочей камеры, которая выполнена со стороны сопла основной камеры с входным отверстием диаметром d1, приблизительно равным da, и заглушенной с противоположной стороны перемещаемым поршнем со штоком, позволяющими регулировать глубину полости рабочей камеры в пределах от 0,5 d1 до 50 d1. На выходе сопла основной камеры установлены дифференциальный манометр типа Testo 435-4 и трубка Пито. Рабочая и основная камеры отделены между собой регулируемым воздушным зазором длиной l1 от 0,25 da до 2 da, в основной камере установлена по оси сопла игла диаметром du много меньше диаметра сопла da, с вылетом от выходного сечения сопла в сторону рабочей камеры. Технический результат — упрощение конструкции устройства, расширения области применения, расширение диапазона воспроизводимых калибровочных сигналов.

Способ определения диаметра пор пористых объектов

Использование: для определения диаметра пор пористого объекта. Сущность изобретения заключается в том, что вводят жидкий галлий или один из сплавов, находящийся в жидком состоянии и выбранный из группы, включающей галлий-индий (Ga-In), галлий-олово (Ga-Sn) и галлий-индий-олово (Ga-In-Sn), в указанный пористый объект; измеряют спектр ядерного магнитного резонанса на ядрах галлия в жидком галлии или в одном из сплавов, находящихся в жидком состоянии и выбранных из группы, включающей галлий-индий (Ga-In), галлий-олово (Ga-Sn) и галлий-индий-олово (Ga-In-Sn), в указанном объекте с определением сдвига Найта (K) по полученному ЯМР-спектру; измеряют спектр ядерного магнитного резонанса на ядрах галлия в жидком галлии или в одном из сплавов, находящихся в жидком состоянии и выбранных из группы, включающей галлий-индий (Ga-In), галлий-олово (Ga-Sn) и галлий-индий-олово (Ga-In-Sn), с определением сдвига Найта (Kb) по полученному ЯМР-спектру; определяют диаметр пор указанного пористого объекта по заданной математической формуле. Технический результат: сокращение времени измерения и анализа, повышение точности определения размера пор, сокращение энергетических затрат, повышение общей безопасности способа.

Термостойкий проводниковый ультрамелкозернистый алюминиевый сплав и способ его получения

Изобретение относится к области цветной металлургии и электротехники, в частности к сплавам на основе алюминия, и может быть использовано при производстве изделий электротехнического назначения, таких как проводники круглого и квадратного сечения, токопроводящие элементы в виде проволоки, пластин и шин, провода воздушных линий электропередач. Термостойкий проводниковый ультрамелкозернистый алюминиевый сплав содержит, мас. %: магний 0,2-0,8, цирконий 0,2-0,5, примеси, в том числе железо, кремний, марганец, хром, ванадий, не более 0,2, алюминий — остальное, при этом сплав имеет микроструктуру со средним размером зерна не более 1 мкм и наноразмерными частицами метастабильной фазы Al3Zr с кристаллической решеткой L12, которые равномерно распределены по объему зерен и имеют сферическую форму с размером не более 25 нм. Способ получения сплава включает отжиг заготовки в интервале температур 300-450°С продолжительностью от 30 до 350 часов и деформацию методом интенсивной пластической деформации при давлении 0,1-6,0 ГПа, в интервале гомологических температур 0,3-0,5 Тпл до значения истинной накопленной деформации е≥4. Изобретение направлено на повышение механической прочности, электропроводности и термостойкости алюминиевого сплава.

Ультразвуковой способ контроля структуры дисперсных сред

Использование: для определения структуры дисперсных сред. Сущность изобретения заключается в том, что заполняют сосуд дисперсной средой, которую облучают продольной ультразвуковой волной с частотой, при которой длина волны λ больше размеров частиц R, фиксируют величину импульса А0, прошедшего через дисперсную фазу (жидкость без частиц), затем вносят частицы, фиксируют величину амплитуды Аn импульсов, прошедших расстояние L через исследуемую систему и времена tn, определяют разность А0-Аn величин импульсов в разные моменты времени tn и на основе массива А0-Аn/А0 судят о структуре дисперсной системы. Технический результат: повышение оперативности определения структуры дисперсных сред, достоверности проведения измерений и обеспечение возможности контроля широкого класса дисперсных систем.

Способ получения металлоорганического каркасного соединения с люминесцентными свойствами

Изобретение относится к получению металлоорганического каркасного соединения с люминесцентными свойствами. Способ включает смешение гидрата нитрата иттербия или эрбия или их смеси в диметилформамиде концентрации 9 ммоль/л с раствором бензол-1,3,5,-трикарбоновой кислоты в диметилформамиде концентрации 42 ммоль/л при комнатной температуре. Реакционную смесь далее нагревают в закрытом сосуде 12-16 часов при 85-150°С, охлаждают до комнатной температуры и фильтруют. Полученную твердую фазу промывают диметилформамидом, далее — в 30 мл этанола не менее трех раз и подвергают сушке в вакууме при 300°С в течение 30 минут. Полученные соединения обладают наряду с люминесцентными еще и ап-конверсионными люминесцентными свойствами, что позволяет использовать их в качестве фотоактивных материалов для преобразования инфракрасного излучения в видимый свет. Изобретение обеспечивает получение металлоорганического каркасного соединения структуры MOF-76 с высокой термостабильностью по упрощенной технологии вследствие исключения необходимости жесткого контроля рН смеси и скорости добавления солей металлов, снижения температуры и времени проведения процесса при повышении выхода целевого продукта почти в 2 раза до 96,3 %.